

MNTK-2012

Eighth International Scientific and Technical Conference «Safety, Efficiency and Economics of Nuclear Power Industry »

Lessons of Fukushima-Daiichi NPP's Accidents to Contribute and to Ensure the NPPs Safety in the World

May 23-25, 2012 (Moscow, Russia) Dr. Tadashi NARABAYASHI Nuclear and Environmental Systems Hokkaido University

Committee for Investigation of Nuclear Safety Atomic Energy Society of Japan

OBJECITVES

March 11, 2011, Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) was hit by tsunami caused by the Tohoku-Pacific Ocean Earthquake, resulting in nuclear accidents in its Units 1 to 4.

In order to enhance the safety for nuclear power stations in the world, we earnestly broaden the lessons derived from the accident, and make proposals to improve safety.

Tsunami Flooding Area in each NPP

MNTK-2012 Conference Moscow, Russia SOE

Prof. Narabayashi, Hokkaido Univ.

Tsunami Flooding Area in each NPP

MNTK-2012 Conference Moscow, Russia SOE

SBO in Fukushima Daiichi NPPs

	#1	#2	#3	#4	#5	#6
DG	A:NG B:NG (T/B B1)	A:NG (B1) B:OK (FP/B 1F)	A:NG B:NG (T/B B1)	A:NG (T/B B1) B:OK (FP/B 1F)	A:OK->NG B:OK->NG (T/B B1) Water Cooling	A:OK->NG (R/B B1) Water Cooling B:OK (DG/B 1F)
Metal-Crad	NG	NG	NG	NG	NG	Barely
Swich	(T/B B1)	(T/B B1)	(T/B B1)	(T/B B1)	(T/B B1)	(R/B B2F)
Power	NG	Barely	NG	Barely	Barely	Barely
Center	(T/B B1)	<mark>(T/B B1)</mark>	(T/B B1)	<mark>(T/B 1F)</mark>	(T/B 2F)	(R/B B2F)
DC	NG	NG	ОК	NG	ОК	ОК
Buttery	(C/B B1)	(C/B B1)	(Т/В ВМ1)	(C/B B1)	(Т/В ВМ1)	(Т/В ВМ1)
ECCS	HPCI:NG	NG	HPCI:OK	(No Fuels in	-	HPCS:OK
RCIC	IC:OK(FC)	RCIC:OK	RCIC:OK	RPV)		(R/B B1)

SBO in Fukushima Daiichi NPPs

ICs could cool down core very well

- ICs could cool down core 7.2MPa to 4.6MPa within about 13min.
- Before tsunami, operator on/off the IC return valve.
- Tsunami came when the operator close the return valve.

ICs in unit #1 were tripped by FC

- Loss of battery power for main control room caused the fail-close action to MO isolation valves to cutoff the IC. It was a fail-dangerous system.
- If the IC continue to operate, the accident would be terminated soon.

RCIC steam turbine also stopped by loss of battery power in Unit #2 and #3.
S/P temperature and pressure were so high that AM water injection took a lot of times.

CV Pressure Trend in unit #1

- After loss of ECCS and IC core cooling, CV pressure increased.
- Water level drifted by vaporizing water in reference leg.
- Radiation level increased at T/B.
- Hydrogen explosion occurred after S/C wet venting.

MNTK-2012 Conference Moscow, Russia SOE

Pressure and Water Level in #1 RPV

- Analysis results show the RPV depressurization started before RPV bottom failure. It might be caused through melted TIP tubes in the core.
- Water level measurement was drifted by the loss of water in a reference leg by hightemperature superheated core. It should be supplied water to the leg.

CV Pressure Trend in unit #2

- After loss of RCIC water injection, DW pressure increased.
- Water level was decreased after RCIC tripped.
- RPV pressure was too high to water injection by Fire pump.
 - Explosion sound occurred near S/C.

Failure of prompt water injection in #2

- Failure of prompt water injection after RCIC stopped in unit #2 caused the core damage and H2 generation started.
 - High-pressure discharge pump driven by diesel engine should be used.

Unit #2 RPV Pressure Trend

Radiation level increased after CV rapture

H2 detonation were occurred after vent operation (#1, #3, #4) Radiation level increased soon after #2 CV rapture

Hydrogen Detonation and CV Rapture

Fukushima Daiichi Sevier Accidents

MNTK-2012 Conference Moscow, Russia SOE

Prof. Narabayashi, Hokkaido Univ. 15

H2 Leak Path from CV

CV top flange and hatches might be leak pass

Cause of H₂ Detonation in #4 R/B

#4 was in outage. No fuels in the core Hydrogen from #3 flowed into #4 via SGTS

#4's SGTS Filters were contaminated

Filters in SGTS showed that H2 and FP supplied from #3 flowed into #4 R/B

#3's SGTS Filters were contaminated

Vent was a cause of suicide bombing ?

Fail-Open valve in SGTS supplied H2 and FP into R/B

Water Recycle System for Core Cooling

We proposed water recycle system for core cooling on March 28

Large Egg and Elephant's Leg

TMI-2:Large Egg in core Chernobyl: Elephant's Leg

MNTK-2012 Conference Moscow, Russia SOE

Prof. Narabayashi, Hokkaido Univ.

Comparison between Chernobyl and Fukushima

Countermeasure 1: Filtered Vent

Lessons of Chernobyl NPP Accidents promoted the installation of Filtered Vent System to protect radioactive materials exhaust. (French, German, Switzerland, Finland, Norway)

Objectives of Filtered Vent System

(1)Preventing C/V rapture(2)Preventing Radioactive material exhaust

Fukushima Daiichi NPP #1 C/V 7bar + Vent + H₂ Explosion ~1day #2 C/V 7bar + No Vent + C/V rapture ~3.5days #3 C/V 6bar + Vent + H₂ Explosion ~3days

Prevent over-pressure C/V rapture + Exhaust of RI and H_2 \rightarrow Filtered Containment Venting System (FCVS)

Feed and Bleed under Long SBO & LUHS

Backfitted on 1992 for (mitigation of Sever Accident)

Prevent over-temperature C/V rapture + H₂ leakage → Special Emergency Heat Removal System (SEHR)

JSME visit Leibstadt NPP, Swiss, on Nov.11,2011

Visit Chooz NPP, EDF France

Filtered Vent

MNTK-2012 Conference Moscow, Russia SOE

Visit Leibstadt NPP, KKL, Switzerland

FCVS:Filtered Containment Venting System

SEHR: Special Emergency Heat Removal System

MNTK-2012 Conference Moscow, Russia SOE

-42.0m (290.0müM)

29

Fels

Special Power Generator on Height

4000kVA mobile gas-turbine generator at 31m parking

Gas-turbine generator will be installed at 25m (Chubu Electric)

Gas-Turbine Generetor 4000kVA, 3.2MW 3.3kV-6.6KV Start within 40sec

Countermeasure 2. Heat Removal System

Heat Sink by Sea Water Network

Countermeasure 3. Tsunami Protection

Diablo Canyon NPP

Sustainable Energy in German: Only 1.9% Solar

Power Source in German 2010(Total 6.2x10¹¹kWh, Tentative) Sustainable Energy Statics

Killer Heat Wave in Europe

The death toll in France, Killer heat Total 50,000 died in 2003 and 2006

Elbe River, Dresden, German, July 2006

2003 Heat Wave in Europe Estimated Dead

France	
Netherla	ands
Portuga	1
Italy	
UK	

15,000 1,400 13,000 20,000

Global Warming brings heat waves
 CO₂ may be much danger than radio activities

The death toll in France during a Europe-wide July heat wave has reached an estimated 40. But it was nothing like the summer of 2003, when killer heat combined with social dysfunction, leaving 15,000 dead.

Fossil Energy Estimation in Future

Progress in Kuala Lumpur, Malaysia

Nuclear Education in Malaysia

- Fukushima Daiichi NPP accident would be terminated, if sufficient examination lead to install countermeasures for tsunami, such as water proof door, mobile power, etc.
 In Europe, it had already installed the Heat Removal System and Filtered Venting System from the lessons of TMI and Chernobyl Accidents.
- Vent line should be independent from SGTS/HVAC line.
 From the Lessons of Fukushima-Daiichi Accidents, we should achieve the 1st class Nuclear safety in the world NPPs.
- Solar and sustainable energy will not sufficient to replace the nuclear energy. Both the energy should be used in future.
- Nuclear education is very important to maintain the Nuclear safety technology and safety culture in the world.

