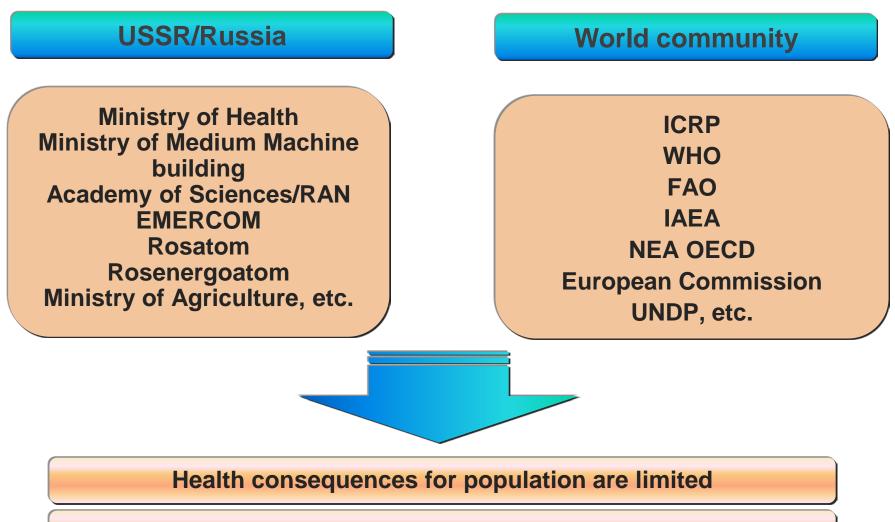
ИБРАЭ РАН

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ БЕЗОПАСНОГО РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ


Россия, 115191, Москва, ул. Большая Тульская, д. 52 (E-mail: pbl@ibrae.ac.ru)

### Chernobyl and Fukushima lessons and modern concepts of severe accident management

Corresponding member of RAS L.A.Bolshov Director of IBRAE RAN

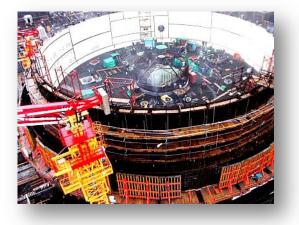
May 25, 2016

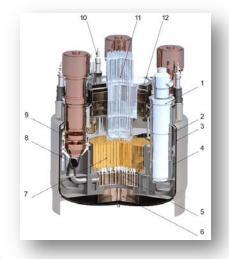
#### Evaluation of causes and consequences of Chernobyl NPP accident



**Consequences for countries and global energetics are huge** 

- 28 deaths of 134 individuals with acute radiation syndrome (firemen and ChNPP personnel);
- Up to 40% of 748 cases of thyroid gland cancer observed at children (at the moment of the accident) in 4 Russian regions; 1 death, others have been cured;


Death rate for liquidators is at the average level for the Russian population


## Significance and lessons learnt of the Chernobyl accident

- Change of Russian society attitude towards NPP severe accidents:
  - NPP modernization and safety system enhancing;
  - Elevation of safety culture due to regulation and rule harmonization;
  - Introduction of defense-in-depth concept and scientifically justified approach to analysis of emergency processes.
- Introduction of the safety priorities in design, construction, operation and management.
- Improvement of professional training of personnel due to application of full-scale simulators at NPP.

## Reactor installation safety at the turn of the 21<sup>st</sup> century

- Culture of safety, independent regulator, responsibility of operator.
- Modernization of installations in operation, development of generation 3+.
- Creation of new safety systems (core catcher, double containment ...).
- Calculations and experiments out of the design modes.
- New principles of safety (natural safety).

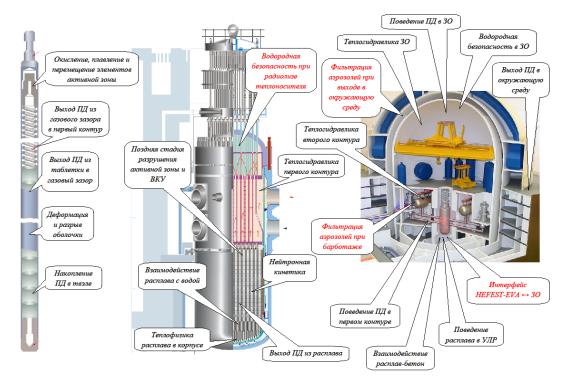








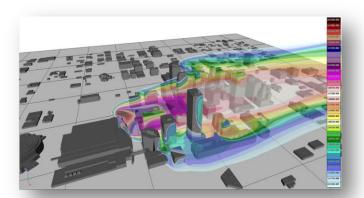
# Modelling is a basic tool to avoid the severe accidents


#### Russian code SOCRAT is one of the best severe accident codes in the world

#### Code SOCRAT:

Modelling of emergency processes starting from initial event up to radioactivity release from containment.

#### Key tasks:

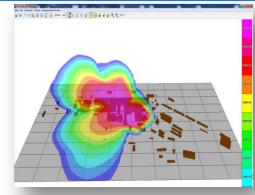

- Hydrogen safety justification for NPP.
- Justification of initial data for core catcher design of NPP-2006.
- Radiation safety justification.



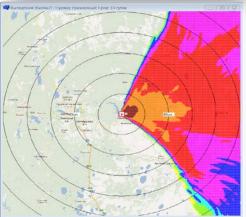
**Designers:** IBRAE RAN, FSUE RFNC-VNIIEF, RSC «Kurchatov Institute», JSC SPbAEP Itd., SSC RF-IPPE, JSC «EREC», JSC "GIDROPRESS", OKBM

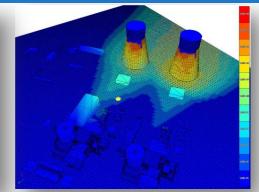
### **Radiation monitoring and emergency response**

- Smart interdepartmental system of preparedness to respond on radiological threats.
- Automated departmental and territorial radiation monitoring systems.
- High-speed redundant systems of communications, notifications; specialized technics, hi-tech equipment.
- System of scientific and technical support centers, software-hardware complexes for express assessment, analysis, and forecast of situation, expertise.
- Professional emergency rescue services of ministries and departments.



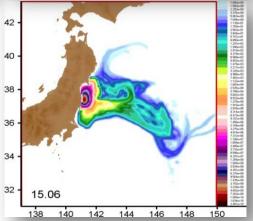



# Software-hardware complexes for assessment and analysis of accident consequences










Функция: Мощность (мкЗв/час): от поверхности, эффективная; Нуклид:



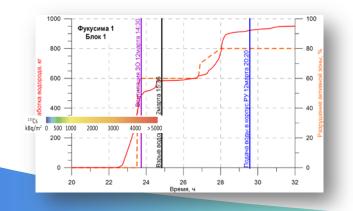


- Set of modern models.
- Effective numerical algorithms.
- Databases and knowledge.

Analysis and the forecast

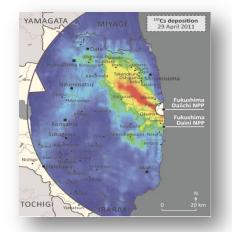
- Development of possible incidents and accidents at NRHF.
- Radioactivity distributions in air, water, and soil.
- Radiation situation parameters .
- Exposure doses for population.
- Recommendations on response and measures of protection of the population, territories and mitigation of accident consequences.

## Analysis of the accident at Fukishima-1 NPP

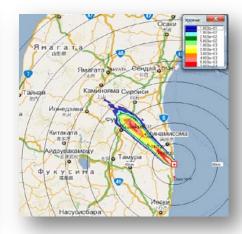

Readiness of the Russian system of emergency response to fast evolution of events.

Less than for one day:

- Initial data for reactor installation at Fukushima-1 NPP (BWR) were prepared.
- Time and quantity of the generated hydrogen were estimated, and the forecast on dynamics of accident evolution was given.
- Fission product releases were estimated.
- Initial data were prepared and atmospheric transport was modelled.


#### Assessment of hydrogen explosion times at NPP Fukushima-1

| Unit   | Calculated time<br>of explosion | Real time of<br>explosion |
|--------|---------------------------------|---------------------------|
| Unit 1 | 12.03 15:16                     | 12.03 15:36               |
| Unit 2 | 15.03 05:45                     | 15.03 06:14               |

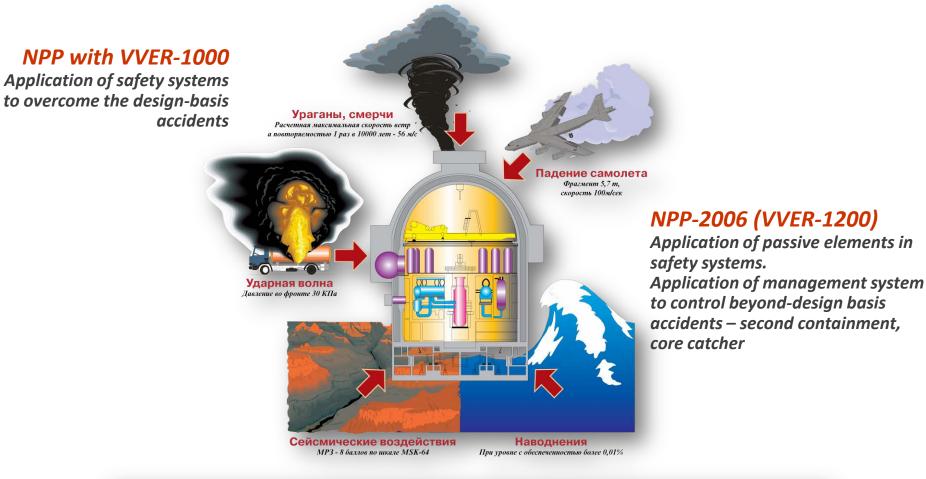


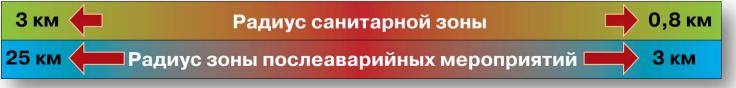

| Unit | Activity of release, Ci |                      |                      |  |
|------|-------------------------|----------------------|----------------------|--|
|      | <sup>131</sup>          | <sup>134</sup> Cs    | <sup>137</sup> Cs    |  |
| 1    | 1.68·10 <sup>7</sup>    | 0.5·10 <sup>7</sup>  | 0.35·10 <sup>7</sup> |  |
|      | (release in 31.2        | (release in          | (release in          |  |
|      | hours)                  | 35.5 hours)          | 35.5 hours)          |  |
| 2    | 0.47·10 <sup>8</sup>    | 2.24·10 <sup>7</sup> | 1.3·10 <sup>7</sup>  |  |
|      | (release in 77.3        | (release in          | (release in          |  |
|      | hours)                  | 84 hours)            | 84 hours)            |  |
| 3    | 0.27·10 <sup>8</sup>    | 1.14·10 <sup>7</sup> | 0.65·10 <sup>7</sup> |  |
|      | (release in             | (release in          | (release in          |  |
|      | 60 hours)               | 62.4 hours)          | 62.4 hours)          |  |

#### Assessment of Cs-137 fallout density



Data of MEXT radiation survey, Japan (2011), Maximum - 15.5 MBq/m<sup>2</sup>





IBRAE modelling (2011), Maximum – 70.0 MBq/m<sup>2</sup>

#### Fukushima: general lessons

- Confirmation of main safety principles, deterministic approach.
- New class of accidents extreme impacts caused by natural cataclysms and/or other external events followed by failure of all or nearly all safety systems.
- Multiple accidents occurring simultaneously at several units.
- Contradiction between the modern level of severe accident science and readiness of personnel to analize and operate in severe accident conditions.

## Provision of the modern level of safety, assessment of external impacts



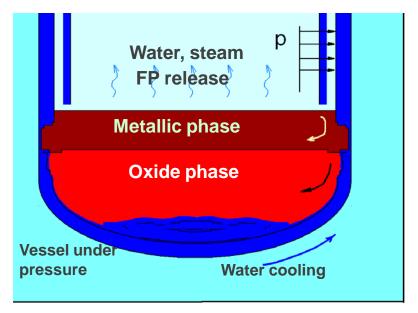


### Challenges

- Provision of integrity of the main circulation loop at design and beyond-design-basis accidents.
- Maintenance of integrity of containment as the last safety barrier and long-term residual heat removal at severe accidents:
  - Hydrogen safety;
  - Corium in-vessel retention;
  - Core catcher.
- Emergency preparedness and mitigation of radiation consequences.

## TMI – Chernobyl – Fukushima




TMI – accident prevention due to invessel localization

4 Unit of ChNPP– solidified fuel-containing substance from steam-relief valve Fukushima 1–3 – estimated configuration of fuelcontaining substance

## **Corium retention in VVER/LWR vessel (1)**

- Mechanisms of a heat transfer from melt to the reactor vessel (or catcher) due to convection and heat conductivity
- Physical and chemical processes in complex multicomponent melts (basic components - UO<sub>2</sub>, ZrO<sub>2</sub>, Zr, SS)
- Focusing of thermal flow due to separation of phases
- Heat-removal to surrounding water
- Mechanical behavior of bottom in the conditions of non-uniform heat loads
- Heave metallic phase is at the bottom

#### **Classic picture, Theophanous**



#### Upon results of the OECD Project RASPLAV-MASKA







### **Corium retention in VVER/LWR vessel (2)**

#### Low capacity NPP:

Is possible and implemented in technical designs for VVER-440 abroad - NPP Loviisa (Finland), Paks (Hungary), Dukovany (Czechia), Mochovce (Slovakia).

Average capacity NPP:

Is proved for projects AP-600, VVER-600, VVER-640.

Large capacity NPP (above 1000 MW):

Additional studies of retention possibility are necessary for scenarios with core melting in 72 hours.

## Hydrogen safety

- During a severe accident at NPP with pressurized water reactor installation, a large amount of hydrogen is released.
- There are the physical reasons assisting the formation of local areas of combustible and detonation mixes (stratification).
- There are the mechanisms destroying the concentration and temperature stratification.

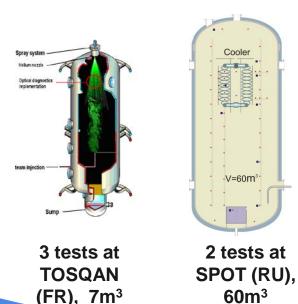
#### Диаграмма Шапиро-Моффети

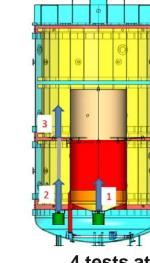
- Процесс дефлаграции возможен при концентрациях H₂ 4-80 %, воздуха ≥ 20 % и водяного пара не более 60 %.
- Детонация возможна при концентрациях Н₂ 20-55%, воздуха ≥ 35% и водяного пара ≤ 33%.



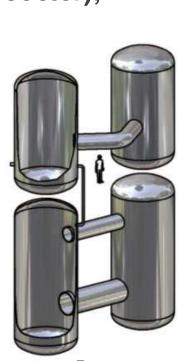
# Causes of formation and degradation of local heterogeneities

- Forces of flotage caused by the lowered density of steam and hydrogen (concentration and temperature stratification);
- Steam condensation displaces composition of gas mix (air-steamhydrogen) towards dangerous modes due to:
  - Operation of condensers-heat exchangers in containment (VVER-1200 and KLT-40S);
  - Steam condensation on surfaces of walls and internal construction elements;
  - Steam condensation at water sprinkling in containment ;

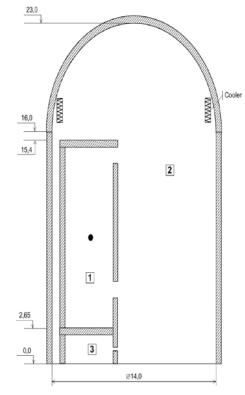

- Passive catalytic recombiners reducing amount of hydrogen in containment;
- Formation of convective flows caused, in particular, by:
  - Difference in temperatures of gas and construction elements (natural convection);
  - Gas cooling at condensers-heat exchangers operation (natural convection);
  - Injection of sprinkler solution (entrainment of gas by droplets – forced convection);
  - Injection of steam jet with elevated speed.




### **Experimental projects ERCOSAM-SAMARA**

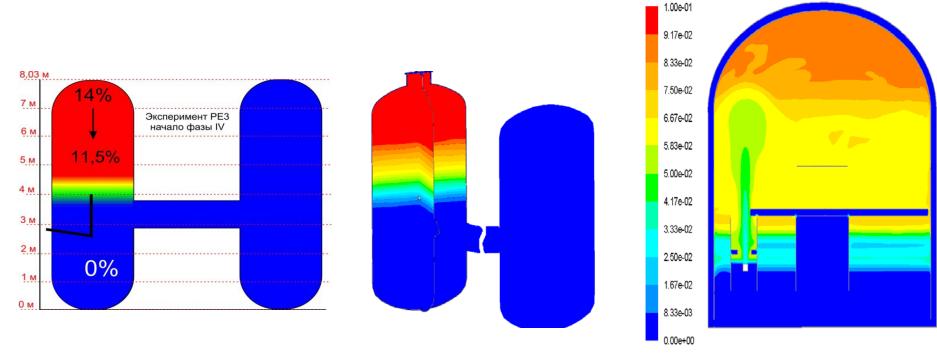

- 5 installations of various scale (16 tests);
- unified scenario for tests;
- interconnected initial and boundary conditions;
- 3 safety systems (sprinkler, STEAM, cooler);
- Impact of scale factor;
- Effect of complex geometry.

V=60m






4 tests at MISTRA (FR), 100м<sup>3</sup>

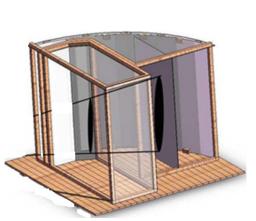



5 tests at PANDA (CH), 2x90 m<sup>3</sup>



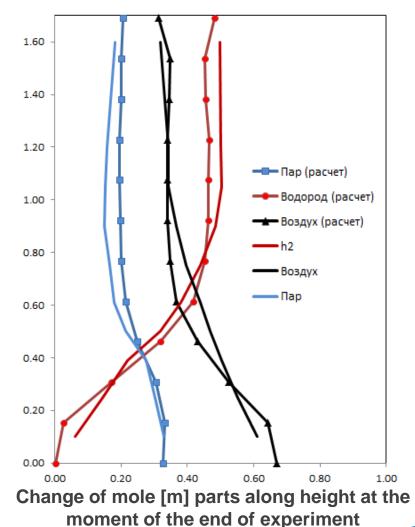
2 benchmarks at conceptual HYMIX (RU), 3181 m<sup>3</sup>

# Accumulation of hydrogen in the phase of core degradation




Low-scale experiment PE3 at PANDA Calculation of the experiment using a CFD model

Calculation of real facility using a CFD model


#### Calculation and experimental program of hydrogen propagation and combustion REA Concern, MosAEP, VNIIT, IBRAE RAN, SRC "KI"

- 1. Local tests on combustion limits: at installation KEIP (sphere) – 419; at installation MUT (shock tube) - 79
- 2. Integral tests on propagation and combustion of hydrogen-steam-gas (light construction elements) - 18
- 3. Integral tests on propagation and combustion of hydrogen-steam-gas (durable construction elements) - 15





Calculation of experiment BM-L3-2 (without PG mock-up) using CABARET code



### Conclusion

- Importance of the deterministic approach in the safety concept - expansion of list of beyond-design-basis and severe accidents, lists of initial events taking into account technical failures, human factor, possible natural and technogenic accidents.
- Preservation of level of the competence in the severe accident area: decrease of level of works on NPP safety enhancement is inadmissible.
  - Maintenance at the due level of works and competences in the field of safety and severe accidents.
  - Maintenance at the due level of works and competences in the field of emergency response and emergency preparedness
  - Participation in international projects.