

Девятая Международная научно-техническая конференция МНТК-2014

"БЕЗОПАСНОСТЬ, ЭФФЕКТИВНОСТЬ И ЭКОНОМИКА АТОМНОЙ ЭНЕРГЕТИКИ" Москва, 21-23 мая 2014 года

ДВУХПАРАМЕТРОВЫЙ КРИТЕРИЙ ГЛУШЕНИЯ ТРУБ В ПАРОГЕНЕРАТОРАХ АЭС С ВВЭР

Лунин В.П., Жданов А.Г., Чегодаев В.В. **НИУ «МЭИ», Москва** Ловчев В.Н., Гуцев Д.Ф., Храмова Е.С. **ОАО Концерн «РосЭнергоАтом»** Жуков Р.Ю. **ОАО ОКБ «Гидропресс»**

Постановка задачи двухпараметрового критерия глушения ТОТ

Кривые допустимых дефектов ТОТ при гидроиспытаниях, полученные в ОАО ОКБ «ГИДРОПРЕСС»

Источник:

В.А. Григорьев, В.В. Уланов, А.А. Шубин, Н.Б. Трунов, С.Е. Давиденко, В.В. Денисов ОБОСНОВАНИЕ ТРЕБОВАНИЙ К ВИХРЕТОКОВОМУ КОНТРОЛЮ ТЕПЛООБМЕННЫХ ТРУБ ГОРИЗОНТАЛЬНЫХ ПАРОГЕНЕРАТОРОВ. Материалы 7-го межд. сем. по гор. парогенераторам, Россия, Подольск, 2006

- 1. Исследование данных эксплуатационного ВТК парогенераторов ВВЭР-440
 - 2. Исследование данных эксплуатационного ВТК парогенераторов ВВЭР-1000
 - 3. Численное моделирование вихретоковых сигналов от дефектов ТОТ
- 4. Обоснование выбора параметров амплитудного критерия
 - 5. Тестовые испытания амплитудного критерия

Процедура экспертного анализа в программе PIRATE

Экспертный анализ с сигналом дополнительной частоты

Состав базы для анализа сигналов

Параметр	Количество	Количество на трубку
Всего трубок	1397	
Всего лотов	25	
Выявлено индикаций в автоматическом режиме	4247	~3.04
Выбрано индикаций для анализа (только те, глубина которых была определена)	600	~0.43
Признано "ложными" индикаций	3647	~2.61

Анализ статистических распределений по параметрам дефектов

по длине

по глубине

Анализ статистических распределений амплитуд сигналов

на частоте 60 кГц

на частоте 130 кГц

Взаимная зависимость амплитуд сигналов на разных частотах

на частотах 130 и 280 кГц

на частотах 130 и 60 кГц

Распределение дефектов в координатах глубина-длина

отмечена зона опасных дефектов, которые имеют большую глубину

80

100

Распределение опасных дефектов в координатах глубина-длина амплитудой

0,1 - 0,2 B

меньше 0,1 В

0,2 - 0,3 B

больше 0,5 В

Двумерные распределения амплитуд сигналов в координатах длина-глубина

для частоты 130кГц

для частоты 280кГц

Двумерные распределения амплитуд сигналов в координатах длина-глубина

Состав базы для анализа сигналов

Параметр	Количество	Количество на трубку	
Всего трубок	4 643		
Всего лотов	98		
Выявлено индикаций в автоматическом режиме	6 825	~1.47	
Выбрано индикаций для анализа (только те, глубина которых была определена)	367	~0.08	
Признано "ложными" индикаций	6 458	~1.39	

Анализ статистических распределений по параметрам дефектов

Количество -10 F1 Глубина, %

по длине

по глубине

Анализ статистических распределений параметров сигналов

на частоте 100 кГц

на частоте 200 кГц

Распределение дефектов в координатах глубина-длина

отмечена зона опасных дефектов, которые имеют большую глубину

Двумерные распределения амплитуд сигналов в координатах длина-глубина

для частоты 100кГц

для частоты 200кГц

Двумерные распределения амплитуд сигналов в координатах длина-глубина

Обоснование выбора параметров амплитудного критерия

Кривые допустимых дефектов ТОТ при гидроиспытаниях, полученные в ОАО ОКБ «ГИДРОПРЕСС» Источник:

В.А. Григорьев, В.В. Уланов, А.А. Шубин, Н.Б. Трунов, С.Е. Давиденко, В.В. Денисов ОБОСНОВАНИЕ ТРЕБОВАНИЙ К ВИХРЕТОКОВОМУ КОНТРОЛЮ ТЕПЛООБМЕННЫХ ТРУБ ГОРИЗОНТАЛЬНЫХ ПАРОГЕНЕРАТОРОВ. Материалы 7-го межд. сем. по гор. парогенераторам, Россия, Подольск, 2006

Программа конечно-элементного моделирования MagNum3D

Модели для расчета сигнала от дефекта на открытом участке и под дистанционирующей решеткой

Вихретоковый контроль. Двухшаговый алгоритм

Постановка квазистационарной задачи для расчета поля влияния дефекта

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \dot{\mathbf{A}}\right) + j \omega \sigma \dot{\mathbf{A}} = \dot{\mathbf{J}}$$

Аппроксимирующая (двумерная) задача расчета распределения поля

Дифференциальный датчик

$$\nabla \times \left(\frac{1}{\mu^0} \nabla \times \dot{\mathbf{A}}^0\right) + j\omega \sigma^0 \dot{\mathbf{A}}^0 = \dot{\mathbf{J}}^0$$

$$-\frac{1}{\mu^{0}}\Delta \dot{A}_{\varphi}^{0} + \frac{1}{\mu^{0}r^{2}}\dot{A}_{\varphi}^{0} + j\omega\sigma^{0}\dot{A}_{\varphi}^{0} = \dot{J}_{\varphi}^{0}$$

При этом поле влияния дефекта определяется решением краевой задачи

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \dot{\mathbf{A}}^{def}\right) + j\omega \sigma \dot{\mathbf{A}}^{def} = \dot{\mathbf{J}}^{non} + \nabla \times \left(\left(\frac{1}{\mu^{0}} - \frac{1}{\mu}\right) \nabla \times \dot{\mathbf{A}}^{0}\right) + j\omega \mathbf{\Phi}^{0} - \sigma \mathbf{A}^{0}$$

Вихретоковый контроль. Двухшаговый алгоритм

Определение допустимых дефектов и расчет сигналов этих дефектов

Осевая протяженность	Глубина дефекта
5мм, 10мм, 20мм	70%, 80%, 90%

Амплитуда сигнала для разных значений длины и глубины дефекта

штатная система контроля MIZ-70 (основная частота 100кГц, нормировка 10 В)

	Глубина, %			
Длина, мм	70	80	90	
20	3.58 B	4.39 B	6.96 B	
10	3.50 B	4.31 B	6.76 B	
5	3.01 B	3.33 B	5.00 B	

Определение критериальных значений амплитуд для MIZ-70

Анализ данных ZETEC MIZ-70 (рабочая частота 100 кГц, нормировка 10 В)

Допустимая глубина, % от толщины стенки	Допустимая амплитуда сигнала на открытом участке, В	Допустимая амплитуда сигнала от дефекта под решеткой, В		
<59%	Трубка не подлежит глушению			
60% - 68%	<3.63	<3.16		
69% - 77%	<3.33	<2.90		
78% - 87%	<2.21	<1.92		
88% - 100%	Трубка подлежит глушению независимо от амплитуды			

Система НАМОЛІС-210 - АІДА (рабочая частота 130 кГц, нормировка 1,4 В)

Допустимая глубина, % от толщины стенки	Допустимая амплитуда сигнала на открытом участке, В	Допустимая амплитуда сигнала от дефекта под решеткой, В		
<59%	Трубка не подлежит глушению			
60% - 68%	<0.63	<0.55		
69% - 77%	<0.58	<0.50		
78% - 87%	<0.38	<0.33		
88% - 100%	Трубка подлежит глушению независимо от амплитуды			

Обработка данных PIRATE (рабочая частота 130 кГц, нормировка 1 В)

Допустимая глубина, % от толщины стенки	Допустимая амплитуда сигнала на открытом участке, В	Допустимая амплитуда сигнала от дефекта под решеткой, В		
<59%	Трубка не подлежит глушению			
60% - 68%	<0.37	<0.32		
69% - 77%	<0.34	<0.29		
78% - 87%	<0.23	<0.20		
88% - 100%	Трубка подлежит глушению независимо от амплитуды			

Анализ данных Techatom TEDDY (рабочая частота 100 кГц, нормировка 5 В)

Допустимая глубина, % от толщины стенки	Допустимая амплитуда сигнала на открытом участке, В	Допустимая амплитуда сигнала от дефекта под решеткой, В		
<59%	Трубка не подлежит глушению			
60% - 68%	<1.64	<1.43		
69% - 77%	<1.50	<1.31		
78% - 87%	<1.00	<0.87		
88% - 100%	Трубка подлежит глушению независимо от амплитуды			

-25

73

DF

	Расположение		Общие	F2	
	Ряд	Кол	Класс	F2 Амп., В	F2 Глубина, %
	69	19	DF	0,73009752	89
	69	19	DF	0,23322916	77
(рабочая частота 130 кГц, нормировка 1 В)	71	25	DF	0,25218603	63
Всего 8890 индикаций	71	25	DF	0,37325597	51
	71	25	DF	0,11060243	2
	73	21	DF	0,18074755	60
цветом (красным и зеленым)	73	21	DP	0,13174553	73
отмечены дефекты, которые должны быть	76	24	DF	0,12555891	34
заглушены по РД ЭО 1.1.2.16.0157-2009 –	21	29	DP	0,10915876	19
260 лефектор	4	38	DP	0,16366076	30
	7	33	DP	0,18111248	98
	6	18	DP	0,12199145	81
По амплитудно-фазовому критерию –	67	-33	DF	0,11012904	61
260 - 89 = 171	68	-34	DF	0,21544348	69
90(34%) pomorrop fyper "anumerupopaulo"	74	-38	DF	0,1637788	10
оэ (34 /0) дефектов будет «амнистировано»	68	-30	DF	0,12429922	31
	69	-31	DF	0,09645715	46
	69	-31	DF	0,34739686	91
	69	-31	DF	0,41483283	62
	71	-25	DF	0,20038317	19
	72	-32	DF	0,59218399	89
	72	-32	DF	0,12599466	28

77

0,12039964

выводы

1. Проведен анализ возможности применения амплитудного критерия при глушении ТОТ ПГ АЭС - исследованы сигналы ВТК по результатам ППР на Кольской (ВВЭР-440) и Балаковской АЭС (ВВЭР-1000).

2. Анализ исследования: при решении вопроса о глушении должны учитываться амплитуды сигналов в совокупности с оценкой основных геометрических параметров дефекта – его глубины и осевой протяженности.

3. 3D моделированием (MagNum3D) рассчитаны сигналы преобразователей от дефектов типа продольной трещины допускаемой глубины и разных диапазонов длины.

4. Геометрические параметры предельно допустимых дефектов определены по результатам исследований, проведенных в ОАО ОКБ «ГИДРОПРЕСС».

5. Проведены тестовые испытания алгоритма выявления индикаций сигнала, соответствующих предлагаемому амплитудно-фазовому критерию, на реальных сигналах эксплуатационного ВТК в ППР-2013 Кольской и Калининской АЭС.

🗾 Ростовская АЭС, ноябрь 2013, трубка 37-99-II-Г. Анализ ВТ сигналов

Эталонирование по сквозному дефекту калибровочной трубки до 1В, -40°

🗾 Ростовская АЭС, ноябрь 2013, трубка 37-99-II-Г. Анализ ВТ сигналов

Эталонирование по сквозному дефекту калибровочной трубки до 1В, -40°

🗾 Ростовская АЭС, ноябрь 2013, трубка 37-99-II-Г. Анализ ВТ сигналов

Эталонирование по сквозному дефекту калибровочной трубки до 1В, -40°

Ростовская АЭС, ноябрь 2013, трубка 37-99-ІІ-Г. Анализ ВТ сигналов

РЕЗУЛЬТАТ АНАЛИЗА:

На трубке 37-99-ІІ-Г обнаружен дефект

Расположение Р6 - 123мм

Оценки по основной частоте F2 = 130кГц:

2010 год – Амп.=0.16В, Фаза=-116⁰, Внешний 45% 2012 год – Амп.=0.22В, Фаза=-135⁰, Внешний 30%

Эталонирование по сквозному дефекту калибровочной трубки до 1В, -40°

